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The problem of constructing optimum or close to optimum nose-shapes of bodies of revolution of fixed aspect ratio in a supersonic 
flow is solved within the framework of a perfect (inviscid and non-heat-conducting) gas. Their contour includes the front face, 
that is, the boundary extremum section with respect to the length and, adjacent to it, the smooth, slightly sloping section that 
makes a corner. In case of low aspect ratios, the slightly sloping section is the result of the exact solution of a variational problem. 
In the case of aspect ratios which exceed a certain value, depending on the free-stream Mach number M,, the exact solution 
requires the introduction of small internal breaks with corner points where even the dominant one of these only has a weak 
effect on the drag value. Contours which are referred to as “close to optimum” do not satisfy the optimality condition, which 
defines the dominant corner. In the examples (1.2 5 M, 5 10) for which calculations were carried out, conical nose shapes were 
found to be far worse that the optimum ones. For contours which are optimum in the approximation of Newton’s formula and 
also, optimum blunt and pointed, power-law nose shapes, the situation occurs for low-aspect ratios and low supersonic Mach 
numbers (pointed, power-law contours can only be successfully constructed for fairly high aspect ratios). The fact that the front 
face is a section of a boundary extremum is shown by comparing the drags of bodies obtained with different permissible variations 
of the front face. An alternative proof, which is not limited by the actual form of the variation in the front face, can be obtained 
from the solution of the conjugate problem, formulated within the framework of the general method of Lagrange multipliers. 
This problem is also of interest in its own right, in particular, on account of the singularities, revealed during its formulation, in 
the reflection of the discontinuities of the Lagrange multipliers from the sonic line with parts of them becoming infinite at the 
point of reflect. 0 2003 Elsevier Ltd. All rights reserved. 

1. INTRODUCTION 

The problem of constructing an axisymmetric nose shape with a specified aspect ratio which has minimum 
drag, that is, “Newton’s problem”, was solved by Newton at the dawn of the calculus of variations using 
formula he proposed for determining the pressure p on the body surface (Newton’s formula) 

p = pa + p,Visin26 (1.1) 

Here, p is the density, I/ is the modulus of the velocity V, free stream parameters are indicated with 
the subscript 00, and 19 is the angle between the tangent to the contour and V, . 

For a long time, Newton’s solution [l] was considered without reference to aerodynamics but, at the 
beginning of the 1950’s, it was ascertained that Newton’s formula works quite well at hypersonic speeds. 
At the same time, aerodynamicists turned to the construction of optimum and, in the first place, of 
planar and axisymmetric bodies using Newton’s formula (1.1). Until that time, Newton’s solution, which 
was well known to mathematicians, was not, as a rule, known to aerodynamicists who were occupied 
with solving Newton’s problem and different generalizations of it. Moreover, even the description in 
the “Mathematical Origins of Natural Philosophy”, which is closest to the modern method of obtaining 
it given in the remarks of Krylov [l], turned out to be rather difficult for aerodynamicists of that time 
to understand. Western specialists appeared to be in an even more difficult position. The above- 
mentioned remarks were unavailable to them, and the description of this method of solution discussed 
in [2] and found in Newton’s correspondence was far more difficult to understand from contemporary 
positions. The absence of references to Newton’s solution in many of the “first” papers dealing with 
this question is apparently explained by this. But when, nevertheless, this was remembered, as was done 
by Egger et al. [3,4], the front face, an obligatory element of Newton’s solution, was introduced without 
explanation and, as was subsequently revealed [5], without understanding the reasons for its appearance. 

tPrikl. Mat. Mekh. Vol. 67, No. 5, pp. 795-828, 2003. 

703 



704 A. N. Kraiko et al. 

The first attempt to solve Newton’s problem using the more complex Newton-Busemann formula 
and, as then represented, more accurate formula than (1.1) was made in [6]. Two problems arose in 
connection with the extremal generatrices found in [6] using this formula which satisfy the classical 
condition for an extremum (“Euler’s equation” of the calculus of variations). First, as in the case of 
Newton’s formula, the extremals, as a rule (the exceptions, which are not of special interest, are a front 
face, that is, a body of zero aspect ration, and a needle, a body of infinite aspect ratio) could not originate 
on the axis of symmetry, that is, they were the generatrices of bodies with a channel. Second, the 
replacement of a non-zero angle of inclination of the extremal at its end point with zero reduced the 
drag by a finite amount. The possibility of such a reduction is associated with the fact that, according 
to the Newton-Busemann equation, in the case of flow past convex corners the pressure at a corner 
point becomes minus infinity, leading to a finite “thrust effect” which reduces the drag. In a gasp 2 0, 
and this effect is a consequence of the incompleteness of the Newton-Busemann equation, which must 
be taken into account when formulating the variational problem. It was established in [7] that taking 
account of this leads to the fact that, within the framework of the Newton-Busemann equation, the 
terminal section of the optimum nose shape turns out to be a section of the boundary extremum, that 
is, the limit of applicability of Newton-Busemann equation which is defined by the equalityp = 0. 

The impossibility of drawing the required two-sided extremum from the axis of symmetry leads to 
the introduction of another section of the boundary extremum [l, 2, g-111. The front face, which is 
present in Newton’s solution, is such section. In the Newtonian case, the front face is a section of the 
boundary extremal, which appears on account of the constraint on the length of the nose section. For 
this reason, only non-negative variations of the longitudinal coordinate 6x 2 0 are permissible on the 
front face. However, as Legendre noted, when it is assumed at the front face 6x > 0 the drag of the 
nose section constructed by Newton can be reduced, albeit not in the first order but in the second order 
with respect to 6x’ z &x/dy, as a front face, satisfying the necessary bilateral extremum condition, does 
not satisfy Legendre’s condition, which is a necessary condition for a “weak” minimum. By virtue of 
this last condition, extremals which realize a minimum in the drag must satisfy the inequality dx/dy = 

ctg6 2 A, where y is the radial coordinate of the cylindrical coordinates x and y. 

In spite of Legendre’s observation, Newton’s solution with a front face is correct, since the front face 
is a section of the boundary extremum not only on account of the constraint on the length of the nose 
shapes but also as the limit of applicability of Newton’s equation. In the case of nose shapes, this formula 
holds if 0 < 6 5 n/2, and the front face turns out to be simultaneously a section of the boundary extremum 
with respect to bothx and 6. In fact, Newton, who did not know the Legendre condition, not only showed 
that, in the light of the above-mentioned constraints, the front face is such a section but also obtained 
the necessary condition (see [ 1, pp. 428-4331) for the optimal@ of a bilateral extremal: dxldy 2 1 which 
is stronger than the Legendre condition. Legendre did not note this Newtonian inequality. 

The sectionp = 0, when the Newton-busemann equation is used, and the front face when the length 
is specified do not exhaust all sections of the boundary extremum in problems of constructing axi- 
symmetric (and planar) nose shapes of minimum wave drag. In the case of a free length, another type 
of section of the boundary extremum appears when constructing planar and axisymmetric nose shapes 
of specified volume within the framework of Newton’s formula [5, 111. Here, in the case of small and 
moderate values of the dimensionless volume, nose shapes of minimum wave drag have the form of a 
pin which protrudes from the front face of the given body. According to results obtained earlier [5,11], 
the above-mentioned inequality dx/dy 2 1 must be satisfied in the sections of the bilateral extremum in 
the problem with a specified volume (in the case of a free length) solved using Newton’s equation (1.1) 
and in Newton’s problem. 

The attention paid above to the construction of optimum nose shapes within the framework of 
Newton’s formula and the Newton-Busemann formula is also justified when the same problem is 
considered within the framework of the full equations for the flow of an inviscid and non-heat-conducting 
gas (“Euler’s equations”). In the first place, the value of the results discussed above is due to the fact 
that the same problem, i.e. that there are no sharp-pointed, extremal generatrices differing from a needle, 
around which there is a flow with an attached bow shock wave, arises when constructing axisymmetric 
nose shapes of minimum wave drag in the approximation of Euler’s equations. This problem, as when 
Newton and the Newton-Busemann equations are used, does not arise in the case of sufficiently long 
nose shapes. However, another problem, associated with the corner points of the optimum generatrix 
does arise. The contribution of these corner points to the drag of optimum planar nose shapes is known 
with a high degree of completeness. The results obtained in the approximation of Euler’s equations 
for optimum planar nose shapes are also important when constructing their axisymmetric analogues. 
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Within the framework of Euler’s equations, the first exact result concerning the constructing of a 
planar nose shape of specified aspect ration, which gives minimum wave drag in a supersonic flow of 
a perfect gas, was obtained by Chernyi [12]. On investigating the flow close to wedge-shaped bodies, 
he picked out the cases when a wedge is an optimum nose shape and established that this is possible 
when the reflection coefficient for the shock wave of pressure perturbations arriving at it along the C+- 
characteristics, vanishes (see Fi q 1, where ifis the generatrix of the nose shape, iw is the attached shock 
wave, and dw and wf are the C - and C-characteristics). For each fixed free stream, this condition is 
satisfied only for wedges of certain aspect ratios I = xf/yf, including a wedge of infinite aspect ratio with 
a zero angle at the vertex and a shock wave which has degenerated into the (?-characteristic. Later, 
the same result was independently obtained by Shmyglevskii, by whom the corresponding variational 
problem was solved using Euler’s equations. 

The above-mentioned problem was solved in [ 131 using a control contour consisting of the shock wave 
iw and the “closing” C-characteristic w$ The schemes for the supersonic flow past a wedge with an 
attached bow shock wave and the nose section of a body of revolution with a channel are shown on the 
left and the right of Fig. 1 respectively. In the control contour method, the drag of the generatrix if is 
expressed, using the integral law of conservation of the axial component of linear momentum, in terms 
of integrals with respect to the sections iw and w$ The specified length of the nose section and the equality 
of the flow rates across iw and wfare expressed as the difference of the integrals along them. The entropy 
of the gas behind the shock wave, which is subsequently conserved along the streamlines, is a known 
function of its angle of inclination o to thex axis and, along the closing C-characteristic, the parameters 
(including x, y and the stream function w) are related by the ordinary differential equations. When 
account is taken of this in the control contour method, the variational problem of determining the 
optimum generatrix ifreduces to a Lagrangian problem with isoperimetric conditions and with additional 
relations in the form of ordinary differential equations. The necessary conditions for an extremum give 
the equations for the optimum shape of the section iw of the shock wave, that is, the function o = o(v) 
and the optimum distributions of the parameters on the section wfof the extreme C-characteristic. If 
the above-mentioned sections and the parameters in them are known, the problem of finding the contour 
if corresponding to them reduces to the numerical solution of two standard problems by the method 
of characteristics: a Cauchy problem with data on the shock wave section iw and a Gourset problem 
with data on the sections dw and wf of the characteristics of the different families. An analysis of the 
necessary conditions for an extremum obtained by Shmyglevskii [13] showed that they can only be 
satisfied for the same aspect ratios I of a planar nose shapes, as were indicated by Chernyi [12]. In the 
case of a perfect gas with a constant ratio of the heat capacities K, the number of such aspect ratios, 
besides 1 = 00, varies from one to three [lO-141 depending on the free-stream Mach number 
1 < M, I 00. 

In the case of nose shapes of bodies of revolution, analogous results were obtained using the control 
contour method [14-161. The results in [13-161 were extended in [17] to an arbitrary two-parameter 
gas. According to [14-171, an optimum bow shock wave, differing from the C+-characteristic, cannot 
start from the axis of symmetry. Hence, the optimum smooth contours if, differing from a needle, found 
in [14-171 by the control contour method, can only be considered as the generatrices of nose shapes 
of bodies of revolution with a channel (also, see [lo, 181. This situation is analogous to that which 
occurred when constructing the optimum, axisymmetric nose shapes using Newton’s equation and the 
Newton-Busemann equation. 
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Optimal@ conditions, which, in the axisymmetric case, determine the extremal sections of the shock 
wave and the closing C+-characteristic, are required later. In the case of a two-parameter gas, they have 
the form [ll, 161 

CL0 YPV2 : Tv,(us - k¶> 

p b’l’U)- TsV2 
[(l +QM2)v+~dMT] = 0 (1.2) 

ypV2sin26tga = -l.t = const (1.3) 

Here, M = V/a is the Mach number, a is the speed of sound, u and v are the x and y components of 
the velocity V, a is the Mach angle: ctga = (M2 - l)l”, T is the temperature, Q = -a2/(pi,) and i, = (ail&~),, 
where i = i(p, p) is the specific enthalpy, a known function ofp and p. For a perfect gas, R = K - 1, 
the parameters on the C-characteristic wfwithout subscripts and the parameters behind the shock wave 
(with the subscripts) correspond to the same values of v,y, =ym(v) = [2~/(kp~V,]~‘~ with an arbitrary 
normalizing factor k > 0, and u0 and u are constants. In the cases considered in [lo, 13-181, u” = p. 
In this case, by virtue of equality (1.3) which holds, in particular, at the point w in it 

which is equivalent to the above-mentioned reflection coefficient Aw vanishing. For specified coordinates 
of the terminal points belonging to the bow shock wave and the closing C-characteristic, any of the 
streamlines sketched in Fig. 1 are optimum generatrices. Equality (1.3) with @/u f 1 will be discussed 
later. 

It has been proposed that the particular class of smooth, axisymmetric contours of minimum wave 
drag, found in [14,15], should be used [15,19] to construct axisymmetric nose shapes of bodies without 
a channel which give minimum wave drag for a specified initial section id. Specification of the section 
id under the assumption that there is a corner at point d uniquely defines the flow (including the shock 
wave ioi”) to the left of di”, that is, to the left of the closing Cf-characteristic of the bunch of rarefaction 
waves which arise in the flow about the corner point d. The section id could, as in Fig. 2(a) be specified 
in the form of a front face: x = 0. However, actual examples were not constructed in [ 15,191. For bodies 
of the type considered in [15, 191 the angle of inclination of the shock wave at the point i” is such that 
a section of the wave i”w and an “extremal” triangular domain i%vf” can be continuously added to the 
shock wave ioi” in it. The sections i”w and wf” of the shock wave and the C-characteristic satisfy 
conditions (1.2) and (1.3) with u” = u, and with i and f replaced by i” and f”. The section f”’ of the 
closing C-characteristic is found using the optimally condition (1.3) for a known entropy, that is 
determined by the initial section of the shock wave ioi”, which is independent of the shape of the contour 
df- 

Within the framework of Newton’s equation and the Newton-Busemann equation, optimum planar 
nose shapes can be constructed for any aspect ratios greater than unity (as well as the nose shapes of 
bodies of revolution with a channel over a certain range of aspect ratios and relative radii of the channel). 
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Fig. 4 

In connection with the results in [12-191, the question therefore arises as to why it is not possible to 
do this when solving the same problems within the framework of Euler’s equations. An analysis of the 
possible limitation of the control contour method, used in [13-B], provides an answer to this. The point 
is that the possibility of an independent and sign-variable variation of the angle of inclination of the 
shock wave o andp or t9 in the closing C-characteristic is implicitly assumed when obtaining the required 
optimality conditions by this method. In the case of smooth bodies, this is in fact so since the initial 
section of the contour id defines the form of the shock wave, and its final section @defines the closing 
characteristic. If, however, the optimum contour has a corner point, the possibility of either a sign- 
variable (Fig. 3a and b) or a sign-variable and independent (Fig. 3c) variation in the sections of the 
shock wave and the closing characteristic falling into the bunch of rarefaction waves disappears. 

The fact that, within the framework of Euler’s equations, the optimum contour cannot be smooth 
in the general case is proved using the technique of variation in a characteristic “E-band”, proposed in 
[12] (Fig. 4). Suppose the optimum generatrix if is smooth and that, for example, the coefficient Aw is 
negative. We now only vary the inclination of the contour in the &-neighbourhood of point d by A > 0 
to the left of point d and by -A to the right of it. Then, for small E and A, the perturbations of the 
parameters are described by the solution of Euler’s equations with reference, in the general case, to 
uniform unperturbed flow (which corresponds to A = 0). The perturbations of the parameters will be 
quantities of the order of A only in the characteristic bands going to the shock wave and in the reflected 
characteristic band shown in Fig. 4, where the + and - signs indicate positive and negative variations 
Sp = O(A). Only the left half of the a-band with Sp = O(A) c 0 falls within the neighbourhood of the 
pointfon the nose shape contour, which leads to a reduction in the drag by 0(&A) while the contribution 
of the remaining sections of the contour is equal to O(E~A). If A, > 0, the same result is obtained when 
the protuberance in the neighbourhood of point d is replaced by an indentation. The possibility of a 
reduction in the drag contradicts the supposition of the optimal&y of the smooth contour. When there 
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is a break of finite angle at point d, the contribution to the drag from its varied neighbourhood is found 
to be a quantity of the order of &A, and such a contradiction does not arise. 

So, in the general case of a non-zero reflection coefficient A,,,, the optimum contour cannot be smooth. 
Moreover, it can be shown by the same technique [lo] that, within the framework of Euler’s equations, 
optimum contours in a flow with attached shock wave do not, in general, have just one but infinitely 
many corner points and points of their condensation. Such as at first glance, hopeless situation (in the 
sense of the construction of the optimum solution) is simplified due to the fact that the break angle at 
the dominant corner point is proportional to A, the angle at the following corner point is proportional 
to A2 and so on when, as a rule, ] A ( + 1. The introduction of just a single corner point therefore enables 
one to obtain the main and exceedingly small reduction in the wave drag. 

The first, close to optimum, contours with a single corner point in a flow with an attached shock wave 
were constructed in [20, 211 using an extremely complicated numerical algorithm, which includes the 
method of characteristics and the optimal@ conditions obtained within the general framework of the 
method of Lagrange multipliers [lo]. 21 generatrices with a single corner point were constructed in 
[20,21]: 7 nose profiles and 14 shells of bodies of revolution with a channel. All of the planar generatrices, 
constructed for a flow of a perfect gas with K = 1.4 past them, had a corner point with the break angle 
that did not exceed 0.05 with a maximum reduction in the wave drag of 0.66% compared with a wedge. 
The drag of the generatrices of the nose shapes of bodies of revolution with a channel, when compared 
with smooth rectilinear generatrices with the same coordinates of the points i and f, turned out to be 
several percent lower. However, this last fact is not due to the existence of the corner point but to the 
fact that, in the axisymmetric case, rectilinear generatrices are also not optimum when Aw = 0 and, 
when A, = 0, their drag exceeds the drags of generatrices, the shape of which is defined by conditions 
(1.2) and (1.3) with no/u = 1, by the same percentages. 

A method of constructing close to optimum smooth generatrices of bodies of revolution with a channel 
has been developed in [22] within the framework of the method of indefinite control contour [lo]. Here 
(also, see [ 1 l]), after conditions (1.2) and (1.3) with u”/p # 1, which must be satisfied on the shock wave 
iw and on the characteristic wf, have been obtained, the single term 

62 = (p’-p)&x, = y&M;- 1)-m&, (1.5) 

remains in the expression for the variation of the wave drag 6x, where 6x, is the increment inx, for 
hxed y, and vw. In the case of arbitrary non-zero variations SX~, the right-hand side of equality (1.5) 
is equal to zero only when the coefficient Aw, which is defined by by formula (1.4), is equal to zero. 
This gives the smooth optimum generatrices investigated in [14-181. When Aw # 0, equalities (1.2) and 
(1.3) written at the point w, determine the constants p and p’/p # 1. The use of the same parameters 
with the l.r and u’/p, which have been found when w < v,,,, enables one to construct the corresponding 
sections of the shock wave and the closing C--characteristic and, using these, also the continuum of 
smooth, close to optimum generatrices. They are “close to optimum” on account of the smallness of 
A,,, mentioned above and not optimum on account of the existence of a non-zero right-hand side of 
(1.5). Comparisons carried out confirmed the closeness of the smooth contours obtained by this method 
to almost optimum contours with a single corner point. The wave drag coefficients of nine out of the 
fourteen generatrices with a corner point constructed in [20, 211 and of the smooth generatrices 
constructed in [22] were identical to three figures. The difference in the remaining five examples did 
not exceed 0.3%, that is, the corner point has an even smaller effect in the axisymmetric case than in 
the planar case. 

The smallness of the dominant corner points, around which flow occurs with an attached shock wave, 
enabled us to seek close to optimum contours of planar nose shapes as a combination of rectilinear 
segments intersecting at a small angle A& at point d. A rapid method of constructing close to optimum 
generatrices with a single corner point was developed in [23] on the basis of these considerations. Here 
(see also, [ll]), the optimum position of the corner point and the break angle at this point as well as 
the reduction in wave drag compared with wedges with the same z are determined for all Mach numbers 
1 5 M, I 00 and relative half-thicknesses of the nose shape z = l/l = yfIxf. When A,,, < 0, the optimum 
corner point is convex and located as shown in Fig. 5(a) [ll, 231. When A,,, > 0, the flow past the optimum 
corner point is accompanied by the formation of a weak shock wave (Fig. 5b) which is located such 
that the reflected shock wave arrives at the pointf, strictly speaking, analysis showed [ll, 231 that, when 
A, > 0, a close to optimum generatrix has two closely arranged dominant corner points of the same 
order: a first corner point past which there is a flow with the formation of centred wave and a second 
corner point past which there is a flow with the formation of a weak shock wave (Fig. 5~). When A, = 0, 
the approach proposed in [ll, 231 gives the exact result [12,13], the optimum rectilinear generatrices. 
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However, this possibility is unique [ll, 231. A rectilinear generatrix is also optimum when I\,+, # 0 but 
the flow over it is sonic (Fig. 5d, the coincident C+- and C--characteristics are normal to ifl. 

Comparisons with the close to optimum planar contours with a single corner point from [20, 211 
showed that their analogues from [ll, 231 achieve no less than an 80-99% advantage compared with 
wedges. The almost instantaneous construction of thousands of close to optimum planar generatrices 
within the framework of the approach developed in [12, 231 enabled us to establish the value of the 
possible gains over the whole range of values of M, and z corresponding to a supersonic flow with an 
attached shock wave. In the case of a perfect gas with K = 1.4, the maximum gains in the wave drag 
coefficient are quantities of the order of 1.6% and these values are obtained in the case of hypersonic 
flow past fairly thick bodies (r = 0.2 . . . 0.5). The gains in the domain corresponding to positive reflection 
coefficients do not exceed 1%. This makes the treatment of the contours with two corner points shown 
in Fig. 5c less urgent. 

In the case shock waves of finite strength, for which us, u > 0, the ordinate of the shock wayy, cannot 
vanish, by virtue of conditions (1.2) and (1.3) as, in this case, the first term in equality (1.2) would become 
infinite with a finite second term. Smooth generatrices of the type being considered cannot therefore 
originate in the axis of symmetry. On recalling the solution of the same problem in the approximation 
of Newton’s equation, the first cause of the constraint obtained can be designated: the optimum nose 
shapes of bodies of revolution without a channel do not necessarily have to be pointed and to be in a 
flow with an attached shock wave. If this is so, the control contour method does not work since it is 
impossible to express the specified length of a body using an integral along a detached shock wave. If, 
however, the required optimum contour, in addition, contains a front face which, within the framework 
of Euler’s equations, can turn out to be a section of a boundary extremum on account of the constraint 
on the length as previously, it is impossible moreover to formulate a condition of admissibility of just 
a unilateral variation in the abscissa of the front face using the method of an indefinite control contour. 
Finally, due to the unsmooth joints between the front face and the section of the two-sided extremum, 
the control contour method is again inapplicable for the same reason as in the case of the internal corner 
points discussed above. 

The facts noted when developing the reasoning presented in [lo, 24,251 justify the consideration of 
nose shapes which are “suspected of being optimum” bodies with a front face x = 0 (when there is a 
constraint on the length), both in the approximation of Newton’s formula and the Newton-Busemann 
formula, as nose shapes without a channel. Here, it is first necessary to determine the optimum size of 
the front face and to construct the optimum or close to optimum gently sloping generatrix which adjoins 
the front face with a corner point. These problems are solved in the next section taking the above into 
account. In the case of “short” nose parts, the smooth generatrices which are constructed satisfy all of 
the conditions for an extremum corresponding to their variation. If the maximum permissible length 
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is greater than a certain quantity, then the smooth, close to optimum, gently sloping sections which are 
constructed are analogous to the smooth contours from [ll, 231. Bodies of this type are called “long” 
bodies. Next, it has to be proved that the front face is a section of a boundary extremum. This problem 
is solved numerically by comparing the drags of bodies with a front face and the nose shapes obtained 
in the case of its permissible variations. The formulation and numerical solution of the so-called 
“conjugate” problem within the framework of the general method of Lagrange multipliers could become 
a similar alternative numerical check. In the case of nose shapes which are “suspected of being optimum” 
and Lagrange multipliers which satisfy the correctly formulated conjugate problem, the expression for 
the variation of the wave drag takes the form 

6x = . . . + XdAx, + I yX’Sxdy (1.6) 
0 

The term, which is analogues to the right-hand side of equality (1.5) and only present in the case of 
“long” bodies, is denoted by the dots, the integral is taken along the front face id (Fig. 2a), X, and x” 
are functions of the flow parameters and the Lagrange multipliers, and Axd and 6x are the increments 
in x of the corner point and the variation of the abscissa of the front face. Non-negative values of 
Axd and 6x are permissible. Hence, according to expression (1.6), the optimality conditions for the front 
face take the formXd 2 0 andX” 2 0. The formulation of the conjugate problem for short bodies, within 
the framework of the general method of Lagrange multipliers, is given in the appendix. 

2. AXISYMMETRIC NOSE SHAPES WHICH ARE OPTIMUM OR CLOSE 
TO OPTIMUM WITH RESPECT TO WAVE DRAG 

In this section “short” and “long” nose shapes are constructed which give, respectively, the minimum 
or close to minimum wave drag. Figures 2(a) and (b) explain the sense of the terms which have been 
introduced. In the case of a short nose shape (Fig. 2b), the characteristic wcf arriving at the terminal 
point f of the optimum contour idf intersects a part of the bunch of rarefaction waves from the C+- 
characteristic, which arises in the flow past the corner point at the junction of the front face id and the 
gently sloping section d$ Coincidence of the points w and c corresponds to the boundary between short 
and long nose shapes. In the case of high aspect ratios, which correspond to long nose shapes, the C- 
characteristic wfis wholly located outside the above mentioned bunch of rarefaction waves (Fig. 2a). 

According to the results presented below, the transition from short to long nose shapes, as a rule, 
occurs with aspect ratios 1 which are close to unity and even less than unity. In this sense, the term “long” 
(nose shape) differs from the generally accepted meaning and, for a given I, it is not known before its 
generatrix has been constructed whether it will turn out to be short or long. 

The construction of short and long nose shapes started out with a calculation of the flow past the 
axisymmetric front face. Euler’s equations were integrated using the establishment process and the 
algorithms in [26-281 for calculating the domains of subsonic and transonic flow using a marching scheme 
and an algorithm for calculating supersonic flows with a variable orientation of the velocity vector. The 
basis of these algorithms is the Godunov scheme and its supersonic, steady-state analogue, their 
modifications [30-331 in the direction of increasing order of approximation in the subdomains of 
continuity of the parameters, and the method for constructing the bow shock wave described in [34]. 
An inclined, penetrable rectilinear boundary was specified behind the front face to which auxiliary 
(bordering) cells with constant parameters equal to the free-stream parameters are joined. 
Specification of this boundary ensures the accurate calculation of the bunch of rarefaction waves. 

Examples of calculations carried out for certain values of the free-stream Mach numbers M, are 
shown in Fig. 6. Henceforth, the results presented correspond to the flow of a perfect gas with K = 1.4 
past the bodies. For each M,, the bow shock wave, picked out during the course of the calculation over 
equal intervals AM = 0.1 of the isomach line (the solid line is for M= 1) and several of the Cf- 
characteristics emerging from the corner point (the dashed lines) are shown. The latter characteristics 
were constructed using the parameter fields found by establishment by integration of the equation 
dy/dx = tg(6 + a). Fi ure 7 gives a representation of the difference meshes for a total number of cells 
of the order of 7 x 10 F . In this figure, twice as many thin mesh lines are shown along each direction for 
M, = 3 which were used when calculating the flow past the front face (the left-hand part of Fig. 7) 
and a cone (the right-hand side) with a detached shock wave. The boundaries of the subdomains with 
meshes of a different structure were separated out and several of the streamlines, constructed by 
integration of the equation dy/& = tg6, have been sketched. 



,&symmetric nose shapes of specified aspect ratio, optimum or close to optimum 711 

The next stage in the construction procedure is the search for the required contour among the short 
optimum nose shapes for a specified aspect ratio 1 = xf/xf. Here, a family of closing, extremal C- 
characteristics cf is constructed, the coordinates of the terminal point of which f lie on the line x = Zy, 
on account of which all of the nose shapes corresponding to them have the specified aspect ratio. The 
extremal C-characteristics cf emerge from different points of the different closing Cf-characteristics 
of the bunch of rarefaction waves with its centre at the terminal point of the front face d. Use is made 
here of the condition for the total enthalpy Z to be constant in the whole of the flow 

2i(p, p) + v2 = 21, = 2i(p,, pm) + v: 

the dependence of the entropy s on I+I found when calculating the flow past the front face 

s = S(w) when Olwlyr, 

(2-l) 

(2.2) 

and, also, the necessary condition for an extremum (1.2) in cf and the differential relations, including 
the compatibility condition in [lo, 3.51 for a C-characteristic 

dy= sin(a - 19) dx cos(l3 - a) d* cwdp ; -- sin6 o - 
dv kypVsina’ & = -kypVsina’ dv Pv2dW ky2pv (2.3) 

Equations (2.3) were integrated with respect to w from point c of the chosen Cf-characteristic dc of 
the bunch of rarefaction waves from w = ‘or, > 0 to IJJZ = 0 simultaneously with the solution of the finite 
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Fig. I 

equations (1.3), (2.1) and (2.2). The constant u on the right-hand side of Eq. (1.3) was calculated using 
the parameters at the point c. In fact, Eq. (1.3) only served as a control. In the calculations, the result 
of the differentiation of Eq. (1.3) with respect to w, taking account of relations (2.1) and (2.2), the 
equation of state i = i(p, p), the expressions for a2 = i&l - pi,) and Eqs (2.3) was used instead of it. 
The resulting equation was integrated together with (2.3). If the aspect ratio 1 is not high, the arbitrariness 
in the choice of the point c in the closing C+-characteristic of the bunch of rarefaction waves enabled 
us to find xf and yf such that their ratio is equal to 1. 

Execution of the procedure which has been described for different closing characteristics of the bunch 
gives a set of extremal C-characteristics cfwhich, while corresponding to nose shapes with a specified 
I, have a different length and different wave drags x in the scale of the fixed front fact. The wave drag 
is equal to the sum of the drag of the front face id and the drag of the gently inclined section xdf The 
drag Xdfwas calculated as the difference between the corresponding flows along cfand dc, and the wave 
drag coefficient C, takes account of the difference in the dimensions, where 

= c = %d+ xdf 
x -- m, P xdf= p 

I[ 
"'b"(=-,"' + u]&-jG"b"~i+a*'+ +v 

f d 

Henceforth, the normalizing factor in the expression for the stream function (see Eq. (2.3) and the 
formula for y-(v) after (1.3)) k = 2, and VL, pL and PZ(VZ)~ were taken as the velocity, density and 
pressure scales (the degree sign denotes dimensional quantities). Hence, U, = V, = pm = 1 and 
pcm = l/(&). 

Comparison of the coefficients C, for nose shapes constructed for different points c either reveals 
the point which gives a minimum value of C, for a specified aspect ratio 1 or it does not located such a 
point. The first possibility corresponds to the construction of a short nose shape which is suspected of 
a minimum wave drag (Fig. 8). The second possibility occurs when the point c, which ensures the specified 
aspect ratio, on rising to the shock wave along the C+-characteristics, closing bunches of ever increasing 
strength is incident on it earlier than the minimum of C, is found. In these cases, the C-characteristic, 
arriving at the pointfof the required contour, starts out in the shock wave outside the initial bunch of 
rarefaction waves (Fig. 2a, wfis the extremal closing C-characteristic). 
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The order of construction of the sections df close to optimum smooth (without corner points) long 
nose shapes differs from the order of construction of their short analogues. In the case of a chosen 
closing C+-characteristic of a bunch with “centre” at the point d, the arbitrariness, which permitted the 
construction of short nose shape with a specified aspect ratio, consisted of the choice of the position 
of the point c on the above-mentioned characteristic. In the case of long nose shapes, the choice of the 
angle of inclination of the shock wave o, at the point w plays the role of this arbitrariness (as well as 
in the selected closing C+-characteristic di”) and a, < o, < oia. For selected o,, the parameters behind 
it were initially determined using the relations in the shock wave. In the case of a perfect gas (the subscript 
w is omitted) [35] 

$M:’ sm*<T- 1) ]y P = pa K-l+ 2 

lc+ 1 (K+ 1)Mtsin20 

u = V,[* --$(sin20--$)I, 2) = V,-$(sin’o---$)ctgo (2.4) 

tg6 = 2, v=Jrn. M,y 
U a 

After the parameters behind the shock wave at the point w have been determined and arbitrary X, 
and y, > 0 have been specified (x,,, = 0, y, = 1, for example), u and u” were calculated from equalities 
(1.2) and (1.3), written at this point. If the coefficient A, = 0, then pa = u. Otherwise, u” f u and, in 
the case of the “close to optimum” nose shape which is constructed later, the necessary condition for 
an extremum at the point W, mentioned in Section 1, is not satisfied. The simultaneous solution of Eqs 
(1.2) (2.1), (2.3) and (2.4) and the equation obtained by differentiating equality (1.3) with respect to 
w enabled us to construct the sections wi” and wf” of the shock wave and the C-characteristic up to a 
point with a previously known o = oi”. However, since the function S(w) is now unknown in advance 
in the section wf” of the extremal C--characteristic wf, the computational algorithm is different from 
that which has been described for constructing the extremal (?-characteristic cfof a short nose shape. 

The calculation of each pair of new points of the shock wave and the C-characteristic, corresponding 
to a smaller value of w and a larger value of o, began with the specification of the value of cr. The 
necessary parameters behind the shock wave, to which the subscript s has been assigned, were then 
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found using formulae (2.4). The quantities y, and w were determined using them and the parameters 
of the “preceding iteration” at the corresponding point of the extremal characteristic: 

w*= p,P,(, +QM*)v+u&5]-1, y = y*p u yea = PJLQU, - Us)PP, ooooca 

All of the quantities without subscripts are parameters for the C-characteristic corresponding to the 
same w. In the first iteration, they are assumed to be equal to the parameters at its preceding point. 
The relation S(w) was determined using the calculated w and the parameters behind the shock wave, 
and a knowledge of this enabled us to find the parameters and coordinates of the new point of the C- 
characteristic using the method described earlier. The iterations were continued until convergence with 
respect to w had been achieved and the calculation was continued until the value o = criO had been 
attained. 

At the very beginning, X, and yw were specified arbitrarily. Hence, the coordinates of the terminal 
point of the bow shock wave obtained as a result were not identical to the known Xi0 and yie from the 
calculation of the flow past the front face. Suppose K is the ratio Ofyio to the value of the radial coordinate 
of the terminal point of the bow shock wave which has been found. The equations of the flow being 
considered are invariant under simultaneous multiplication of the x and y coordinates by any positive 
number and a shift along the axis of symmetry. In accordance with this, multiplication of the coordinates 
of the extremal shock wave which have been found and the C--characteristic by K, the multiplication 
of v by K* and the necessary shift along the x axis ensured matching of the coordinates and the stream 
function at the point. 

When 0 = rlrf 5 w I vi0 = r+, the function S(w) is known from the calculation of the flow past the 
front face. Hence, the section f”f of the characteristic wf was constructed in the same way as the 
construction of the whole of the extremal characteristic in the case of short nose shapes. The arbitrariness 
in the choice of o,,, enabled us to construct long, close to optimum nose shapes with a specified aspect 
ratio. By virtue of the integral law of conservation of then: component of the momentum. the coefficient 
C, of the nose shapes constructed is equal to 

The close to optimum, long nose shapes was determined using the minimum of C, as a function of 
yin. Figure 9 ‘11 t t 1 us ra es the construction of long, close to optimum nose shapes for M, = 3. The 
increments AC, = (C,/C, 1 11 = i - 1) x 100 as a function of n = yio/yi+ are shown in this figure for different 
aspect ratios (the numbers on the curves). Here, C, I,, = i is the magnitude of the corresponding coefficient 
of a nose shape of fixed aspect ratio, constructed foryiO/yi+, C, is the value of them (for the same value 
of I) for nose shapes withyi > yi+ and i+ is a common point of the shock wave (Fig. 2a) and the C+- 
characteristic di+ which touches the sonic line. The values of u at the points of minimum C, and AC, 
are identical. The right-hand points of all of the curves correspond to the triangles Pwf” which have 
degenerated to a point. The curve corresponding to 1 = 1 decreases monotonically without reaching a 
minimum. In the case of large u, there are no solutions with a triangle Pwf” which ensure the equality 
I = 1. This means that the optimum nose shape for 1 = 1 is not long but short. 

In the case of the curves constructed for 1.4 I I I 8.0, there is a unique minimum, which is obtained 
at a fixed value Ofyio. This corresponds to the solution in the class of short nose shapes (Fig. 2b) for 
which the initial point c of the closing C-characteristic cf, when raised along the closing Cf-characteristic 
of the bunch of rarefaction waves with centre at the point d, turns out to be simultaneously also a point 
of the above-mentioned (?-characteristic and the bow shock wave. Optimum (or close to optimum) 
nose shapes with large aspect ratios are obtained if the corresponding triangles i”wf” (which are specific 
for each value of I) are constructed, in accordance with the scheme of Fig. 2(a), precisely at this point 
of the shock wave which arises in the flow past the front face. The constancy of u at which the minima 
in the curves for 1.4 I1 I 8.0 are attained is also explained by this. Both for short as well as for long 
nose shapes, the optimum relative size of the front face h = yd/yt 

Up to now, it has been assumed that the front face is a section of a boundary extremum which appears 
on account of the constraint of the maximum permissible length of the nose section. We recall that, 
within the framework of Newton’s formula, the front face is a section of a boundary extremum not only 
because of the constraint on the length but, also, by virtue of the restriction 0 I 6 I 7r/2 on the applicability 
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AC,, % 

\I 

Fig. 9 

of formula (1.1). In particular, this last restriction prohibits internal lunes (with 6x 2 0 when 0 Sy c l), 
the introduction of which within the framework of Newton’s formula reduces the drag by a quantity of 
the order of (6~‘)~. The variations of a front face with Axd 2 0, which are permissible within the framework 
of (l.l), with the optimum choice of its size and corner angle (19d+ = n/4) lead to an increase in the 
drag (in the approximation of Newton’s formula) which is proportional to AQ. Within the framework 
of Euler’s equations, any variations of the front face which do not increase the length of the nose shape 
are permissible and the algorithms described above for constructing them still left open the question 
of the effect on C, of its permissible variation (which does not increase the length). The question of 
the optimality of a front face as a section of a boundary extremum has been investigated numerically. 

The contours of a short nose shape, the contours obtained by three different methods of permissible 
variation of the front face and of the isomach line (with a step size AM = 0.05, the solid curves are 
sonic lines), are shown in Fig. 10 for M, = 3 and 1 = 0.8 and several of the C+- and C--characteristics 
are sketched using dashed curves in Fig. 10(a). The values of C, presented in Fig. 10, found from the 
solution of the corresponding direct problems, confirmed that all the permissible variations of the front 
face increase the wave drag. The greatest increase was observed when the front face was “ground off” 
(Fig. lob, AXE = 0.0.5yd), a noticeable increase was observed for a lune with an inclined tangent at the 
upper point (Fig. lOc, 6Xi = O.lyd, S19d- = 17”) and an insignificant increase was observed for a lune with 
a vertical tangent at the upper point (Fig. lOd, 6Xi = O.lyd, St9d- = 0). 

The small increase in the drag coefficient in the last two cases and the fact that, in the approximation 
of Newton’s formula, the front face is a bilateral extremum (which does not satisfy the required condition 
for a minimum x’ 2 l), made it advisable to use analogous (although also impermissible in the case of 
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c-,=0.3474 0.3557 0.3480 0.3476 
Fig. 10 

a fixed aspect ratio) variations of the front face using a method which is symmetrical about they axis 
but with an increase in length. In the case of a variation with 819~. = 0, a decrease in the drag coefficient 
C, by the same magnitude as its decrease in the case of Fig. 10(d) was obtained, that is, the quantity 
SC, is proportional to 6Xi and the front face is not a section of a bilateral extremum. 

The results of the calculation of short (S) and long (L) nose shapes are collected together in Table 1. 
The relative dimensions of their front faces h = ydIyf, the angles of inclination at the initial points 19~~ 
and final points 19~ of their 

If Newtonian bodies (hN and 19~ 
ently sloping sections df, the analogous characteristics of the optimum 
for rYN d+ = 459, the drag coefficients C, of the optimum or close to optimum 

nose shapes and the relative gains (as a percentage) of cones AC,c”“, of Newtonian (AC: is the first or 
unique number of the penultimate column) and optimum power-law bodies (AC:’ is the second number 
and ACF2 is the number in brackets) are presented together with M, and the aspect ratio 1. If Cy, 
C,” and C,mk are the wave drag coefficients of the corresponding nose shapes calculated using Euler’s 
equations, then AC? = (Cy/C, - 1) x 100 and AC,” and ACpk are calculated in a similar manner. 
The values of CFr were taken from [36] where, for M, 2 2, the flow past blunt, single parameter optimum 
nose shapes of medium and large aspect ratio (I 2 1) with a generatrix equation y/yf = (x/+)” was 
calculated and the exponents m, which ensure that C, is a minimum for given values of M, and I, were 
determined. The values Cp2 of the optimum, pointed two parameter nose shapes were kindly provided 
by S.A. Takovitskii [37]. 

For a given aspect ratio I > 0, the construction of the optimum nose shape within the framework of 
Newton’s formula begins (for example, see [ll]) with the numerical determination of the root 
X; = qf > 1 of the transcendental equation 

qf(4q2 + 3q4 - 7 - 41nq)f( 1 + qy)-2 = 41 (2.5) 

If 1 > 4, then qf = 41/3. After determining the root of Eq. (2.9, hN 
(the sign = applies for 1 > 4) 

and fi? were given by the formulae 

hN = 4qf 27 
l9; = arctg;- 

3 3 

(1 +q;)2==21(812+9)’ arctgz = 41 

and the section df of the Newtonian contour is constructed using the parametric relations 

X= qf 2 ,(4q2+3q4-7-41nq), y = 
4f(l +42)2 

4(1+4/) 4(1 +q2$’ 
1 Ix’=qIqf 

If we change from x and y to x0 = x/hN and y” = y/hN, the equations take the universal form 

x0 = (4q2+3q4-7-41nq)/16, y” = (l+q2)2/(4q), lIx’=qcm (2.6) 
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1.5 (S) 

1.5 (L) 

2 U-J 

3 (S) 

3 6) 

4 6) 

4 CL) 

6 (9 

6 6) 

10 6) 

10 CL) 

I "rXl0 ?xlC 6 dw 

degree 
fif* 

zlegrec 

I$, 
degree 

c,x 104 

0.25 810 777 57 28 39 4316 
0.50 724 600 55 20 35 3469 
1 .oo 595 351 54 15 28 2548 
2.00 399 121 55 11 18 1578 
4.00 175 23 55 7 10 720 
8.00 42 3 55 3 5.3 241 

12.0 15 1.c 55 1.8 3.6 117 
!O.O 4 0.2 55 0.9 2.1 45 
2.00 297 121 55 14 18 1650 
4.00 109 23 55 8 10 680 
8.00 24 3 55 4 5.3 223 

12.0 10 1.a 55 2.2 3.6 109.4 
lO.0 2.5 0.2 55 1.1 2.1 42.9 
0.25 784 777 61 34 39 5605 
0.50 654 600 59 29 35 4525 
1.00 452 351 58 24 28 3059 
2.00 238 121 57 17 18 1566 
4.00 79 23 57 10 10 605 
8.00 18 3 57 5 5.3 198 

12.0 6.5 1 57 2.8 3.6 98.9 
to.0 2.3 0.2 57 1.4 2.1 39.9 
0.25 776 777 61 35 39 5801 
0.50 633 600 60 31 35 4640 
1.00 130 351 56 27 28 3049 
2.00 220 121 56 19 18 1499 
4.00 71 23 56 11 10 558 
8.00 16 3 56 5 5.3 182 
2.0 6 1.0 56 3 3.6 91.4 

!O.O 2 0.2 56 1.8 2.1 37.5 
0.25 770 777 62 36 39 5942 
0.50 515 500 60 33 35 4702 
1.00 120 351 54 28 28 3007 
2.00 209 121 54 20 18 1428 
4.00 65 23 54 12 10 506 
8.00 15 3 54 6 5.3 161 
2.0 7.8 1.0 54 4.0 3.6 81.4 

to.0 2.2 0.2 54 2.2 2.1 33.9 
0.25 165 777 62 37 39 6013 
0.50 508 500 60 34 35 4725 
1.00 119 351 52 29 28 2982 
2.00 !05 121 52 22 18 1382 
4.00 63 23 52 13 10 466 
8.00 14 3 52 7 5.3 140 
2.0 5.5 1.0 52 4.9 3.6 69.9 
0.0 2.4 0.2 52 2.8 2.1 29.3 

Table 1 

Lcs,“” ( 4 
hCf , AC;“’ 

(AC:). % 

50 6 21 
75 24 32 

102 43 33 
101 33 25 

50 15 20 
48 12 (3.3) 19 
57 16 (2.6) 19 
77 25 (3.4) 19 
59 14.12 25 
33 6.0.3.8 20 
35 6.1.2.4 (2.0) 19 
44 9.7,4.4 (2.1) 19 
59 17, 9.0 (2.7) 19 
38 1.2 21 
61 3.6 32 
88 6.7 33 
49 7.0 25 
28 2.9 (3.1) 20 
27 2.7 (1.0) 19 
32 4.7 (1.8) 19 
43 9.4 (1.7) 19 
37 0.9 21 
62 1.6 32 
81 4.6,21 33 
49 5.5, 10 25 
28 2.4, 2.5 (2.4) 20 
24 1.6, 1.0 (0.0) 19 
27 2.8, 1.9 (0.9) 19 
36 6.1.3.5 (1.9) 19 
36 0.8 21 
63 0.8 32 
79 3.8,20 33 
51 4.7, 10 25 
31 2.4, 2.2 20 
23 0.9,0.2 19 
23 1.1.0.4 19 
28 3.0, 1.7 19 
36 3.5 21 
64 4.3 32 
78 3.5.20 33 
53 4.3, 9.7 25 
36 2.3, 2.1 20 
27 1.2,0.6 19 
23.0 0.9,0.3 19 
22.6 1.3.0.7 19 

Within the framework of Euler’s equations, the flow past precisely this body (one in the case of a 
fixed M,) was calculated initially by establishment and then using the supersonic marching scheme. 
The C,” of those of its initial sections which, in terms of qffrom (2.5) correspond to the specified aspect 
ratio I, were simultaneously determined. For comparison, Cy and C,” were calculated using formula 
(1.1). On the cone cP = l( 1 + 12) and on the front face cP = 1. Taking this and relations (2.6) into account, 
we have 

q; = -!-. CT,“, = (3q4+ 10q2+41nq+2q-*+ 17)f_ 27(81*+ 15) 
1 +12’ 32~;~ 6412(412 + 9)’ 

hN = 1 
YT 

(2.7) 
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M, 

1.5 

3 

6 

12 

0.25 6 45 71 21 42 
0.50 3 32 41 32 41 
1.00 1.5 -3 3 33 41 
2.00 0.75 -37 -24 25 51 
4.00 0.375 -45 -41 20 31 
8.00 0.1875 -57 -52 19 33 
0.25 12 22 31 21 36 
0.50 6 10 30 32 56 
1.00 3 -13 15 33 76 
2.00 1.5 -14 4 25 39 
4.00 0.75 -24 -21 20 24 
8.00 0.375 -39 -36 19 23 
0.25 24 16 30 21 35 
0.50 12 4 28 32 62 
1.00 6 -7 20 33 72 
2.00 3 -7 7 25 44 
4.00 1.5 -12 -5 20 28 
8.00 0.75 -22 -20 19 22 
0.25 48 15 28 21 35 
0.50 24 3 28 32 64 
1.00 12 -6 22 33 72 
2.00 6 -5 12 25 48 
4.00 3 -7 5 20 34 
8.00 1.5 -11 -5 19 21 

Table 2 

The subscript N denotes that the corresponding coefficients were determined using Newton’s formula. 
According to formula (2.7) C$jVC!& + 32127 = 1.185 when 13 00. The quantity AC$& = (Cs/Cr& - 
1) x 100 is shown in the last column of Table 1. 

A comparison of h and hN shows that the front faces of optimum Newtonian bodies are almost always 
smaller. The difference increases monotonically as the aspect ratio becomes larger and as M, decreases. 
The exceptions are the shortest bodies in the case of hypersonic velocities (I = 0.25, M, = 6 and 10). 
Here, h is somewhat less than hN. The break angles at the corner point of Newtonian bodies are always 
larger (SF+ = 45” and I?+~+ = 52-62”). An inverse inequality mainly holds for the angles of inclination 
at their terminal points. As a result, the gently inclined Newtonian sections are less convex. On account 
of this and the smaller angles of inclination to thex axis, the pressure on the terminal sections of optimum 
bodies (close to the pointf) is less than that on Newtonian bodies. 

A comparison of the values of AC,“, AC? and AC$&, that is, the losses of the cones, calculated 
within the framework of Newton’s formula compared with the optimum Newtonian nose shapes exposes 
the advantages and disadvantages of Newton’s formula. When M, 2 3, the quantity AC,” is 0.5-7% for 
all aspect ratios, that is, by one to two orders of magnitude less than AC?. For M, = 1.5 and 
0.5 5 1 I 8.0, the magnitude of AC: exceeds lo%, reaching a maximum of 43% for I = 1. However, 
AC,” is also 2.4-4 times less than ACT in these cases. This is indicative of the surprising efficiency of 
Newton’s formula in optimum profiling problems with an incorrect determination of the wave drag using 
it (see below). This property of Newton’s formula has been revealed [ll, 22,38,39] in problems of the 
optimum profiling of bodies in the flows with attached shock waves. 

The excess AC~N of the drags of cones over the drags of Newtonian nose shapes within the framework 
of Newton’s formula is much less in all of the examples for which calculations were carried out than 
in the approximation of Euler’s equations. Table 2, where the drag coefficients C, of cones and Newtonian 
bodies, calculated using Newton’s formula (AC$!&) and using Euler’s equations (AC$&), are compared, 
reveals the reason for this. The errors (as a percentage) of Newton’s formula when calculating the values 
of C, for cones SC,“” = (C$I$c$ - 1) x 100 and Newtonian bodies (SC:) are presented there. Newton’s 
formula can both overestimate (SC, > 0) and underestimate (SC, c 0) the above-mentioned coefficients. 
However, it always “works in favour of” cones. Hence, within the framework of Newton’s formula, cones 
lose out to Newtonian nose shapes to a far lesser extent than in the approximation of Euler’s equations. 
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Fig. 11 

Earlier, a comparison of their drag coefficients C, was only carried out using Newton’s formula. Since 
AC$& < AC$&, it is very significant that such a comparison did not completely reveal the advantages 
of Newtonian nose shapes. In the case of cones when M, 2 3, an increase in the errors in Newton’s 
formula as the hypersonic similarity parameter K = M,z is reduced [35] occurs when I2 1, when the 
shock wave is attached to the vertex of the cone. 

Figure 11, which corresponds to M, = 1.5 and 1 = 0.25, explains the reason for the increase in the 
drag coefficient C, of Newtonian bodies. The isomach lines (Fig. lla and b, AM = 0.1, the solid curves 
are the lines M = 1 and the blurred shock wave), isobars (Fig. lib, Ap/pm = 0.05, the solid curve is for 
PI& = 1) and the streamlines (Fig. llc and d) are shown in this figure. In the flow past the corner 
point in this case, an overexpansion and subsequent stagnation of the flow occurs. On account of the 
stagnation, a closed supersonic zone with an acceleration of the gas up to M > 1.6 andplp, c 0.8 adjoins 
the corner point and with a detached, inviscid circulating flow close to the surface which is practically 
independent of the difference mesh (with an overall number of cells N = 1656,6624 and 26496). The 
final acceleration of the flow up to supersonic velocity occurs on the main sonic line to the right of the 
closed supersonic zone. A calculation within the framework of the complete Reynolds equations and 
a differential model of turbulence [40-44] gave practically the same detached zone (Fig. lld). 
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Y 

Fig. 12 

In the case of Newtonian bodies with 1 > y,/x,, where X* and y* are the coordinates of the point of 
emergence from the contour of the C+-characteristic touching the main sonic line, the flow in the vicinity 
of the front face remains the same as in Fig. 11. For 1 = 0.25, a domain of over expansion of the flow 
with a pressure of the order of and belowp, occupies a considerable part of the gently inclined segment. 
The small increase in C, of the shortest Newtonian body (Table 1, AC,” = 6%) compared with the 
optimum nose shape is also explained by this. As 1 increases, the domain of stagnation in the flat section 
withp > pm starts to make a large contribution. As a result, AC,” rapidly increases and attains a value 
of 43% when 1 = 1, then decreases when 1 is increased further and, at large 1, begins to become larger 
once again, reaching a value of 25% when 1 = 20. The behaviour of AC: at other values of M, is similar 
but with values which become smaller as M, increases. For M, 2 2, a detached zone under a local 
supersonic zone did not arise. 

The values of AC:’ for blunt, one-parameter optimum power-law nose shapes have been calculated 
[36] when M, = 2 for 12 2 and, when M, 2 4, for I2 1. According to Table 1, in the case of the calculated 
values of M,, AC!&?’ = 20% when I = 1 and lo-12% when 1 = 2 for such bodies.When I is increased 
further, the value of AC,“’ decreases to a few percent and, for large values of M,, to a few tenths of a 
percent and then increases again (up to 9% for I = 20 and M, = 2). Pointed, two-parameter, optimum 
power-law nose shapes [37] can only be successfully constructed for sufficiently large values of 1: when 
M, = 1.5 and 2 for 12 6 and, when M, 2 3, for Z 2 4, that is, when the front face of the optimum nose 
shape is small. The values of CF2 calculated in [37] for M, = 1.5,2,3 and 10 2 12 6 or 4 exceed the 
values of C, for an optimum nose shape by no more than 3.3%. 

Concluding this section, we will now compare the nose shape which is optimum with respect to C, 
in this paper with the nose shapes in [45,46] with the smooth contours 

y = (x/Z)“(2-x/Z)“, Olxll (2.8) 
with a constant exponent it, with respect to the values of C,, the coefficients of frictional drag C, and 
total drag C,. Depending on the flow conditions (M, and the Reynolds number Re, which is determined 
using the radius of the base and the free-stream parameters), n was chosen in the range 0.3 I IZ I 0.7. 
According to formula (2.8). Such nose shapes have a vertical tangent at the leading point (when 
x = 0) and a horizontal tangent at the end point (when x = I). 

The comparison was carried out for Z = 4, M, = 1.2 and Re = 7 x lo6 when, according to the available 
results [45], the optimum exponent IZ = 0.7. For such M, and I, the optimum nose shape with a front 
face turned out to be short, that is, the nose shape which realizes the exact minimum in C,. The contours 
of the optimum nose shape, of the two nose shapes described by formula (2.8) with n = 0.7 and 0.3, a 
Newtonian body and a cone are shown in Fig. 12 (curves 1,2,3,4 and 5, respectively). While the volumes 
of the optimum nose shape and the nose shape described by formula (2.8) with n = 0.7 are practically 
equal, the volume of the nose shape described by formula (2.8) with y1 = 0.3 is 25% greater. The 
calculations were carried using well-known methods [40-44] within the framework of the complete 
Reynolds equations and the “~~-90” differential model of turbulence. The results are given below 

Version I 2 3 4 5 

c, x 104 670 947 1033 962 1359 
c, x IO4 83 84 95 75 53 
c, x IO4 753 1031 1128 1038 1412 
AC,, % 0 41 54 44 103 
ACp % 0 1 14 -10 -36 
A&, % 0 31 50 38 88 
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Here AC, is the excess of the values of C, compared with the values of C, for the optimum nose shape 
(and similarly for ACf and AC,) and the number of the version corresponds to the number on the 
generatrix in Fig. 12. 

3. APPENDIX. FORMULATION OF THE PROBLEM OF 
CONSTRUCTING SHORT OPTIMUM NOSE SHAPES BY THE GENERAL 

METHOD OF LAGRANGE MULTIPLIERS 

The problem of the profiling of short nose shapes which, for a specified aspect ratio, achieve a minimum 
value of the coefficient C, has been solved in Section 2. It was established numerically there that, for 
permissible variations of the front face, the coefficient C, of the constructed nose shape increases. We 
will now show to what the proof of this fact within the framework of the method of Lagrange multipliers 
reduces [lo]. 

The flow domains, in which the conjugate problem for Lagrange multipliers is formulated and solved, 
are shown in Fig. 2(b). The flow in the domain Q with a boundary JQ, consisting of the shock wave 
icw, the section of the axis of symmetry ici, the front face id-, the flat section d+fand the C-characteristic 
fi, is described by the equations 

L, = 
&p ap 
--- = 0, k = 1,2,3 ax ay 

p = ypu, b(‘) = -ypv, aC2) = yp+ypu2, bC2) = -ypuv 
($3) 

= ypus, d3' = -YPVS 

(3.1) 

with the impermeability 

L&1)+x’p = 0 (3.2) 

in the front face id- and in the section d+f, the condition 6 = 0 in the section ioi of the x axis and with 
relations in the section iow of the nose shape. In Fig. 2(b), the points d-, d, and d coincide. However, 
the flow parameters at these points are different. We will write the shock-wave equation in the form 

LWE,$-X = 0 (3.3) 

In the case of a fixed free stream, the quantity C = ctgo defines all the flow parameters behind the 
shock wave. Using this quantity, two of the four conservation laws in the bow shock wave can be written 
in the form (parameters behind the shock wave have no subscripts) 

$)+&l) = &u+&), p+~p = JJ)+x@ (3.4) 

Apart from a term and a multiplier which are unimportant in the solution of the variational problem, 
the nose section wave drag is equal to 

(3.5) 

The distribution ofp on idfand, consequently, also x are determined by the solution of Eqs (3.1) for 
the conditions formulated above, including (3.2)-(3.4) in idf, the section i& of thex axis and in the shock 
wave iow. In accordance with this and acting within the framework of the method of Lagrange multipliers, 
we formulate the functional 

in order to obtain the required optimal&y conditions. 
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Henceforth, v = v(y), h = h(y) and uk = u&, y), which are to be determined from the solution of 
the conjugate problem which is formulated later, are undetermined Lagrange multipliers and summation 
is assumed over repeated indices k = 1, 2 and 3. 

By virtue of the definitions of L, L” and Lk from equalities (3.1)-(3.3) the variations of the functional 
Z, introduced by equality (3.6) and the variations of the optimizing functional x, defined by formula 
(3.9, are identical for any permissible variations of the contour idf, that is 6% = 61. Hence, by acting 
in accordance with the rules which take account of the form of expression (3.5) the fact that inequalities 
(3.4) are satisfied in the bow shock wave, the singularities in the calculation of the contribution to 61 
due to variation of the coordinates of the corner point d and the possibility of discontinuities in the 
Lagrange multipliers p&x, y) in the case of continuous flow parameters and other factors described in 
[lo], we arrive at an expression for the variation 6x = 61. Together with variations of the controls (the 
functionsx = x(y) = 0, when 0 I y I yd, andx = x(y), when yd l y 5yf, and the coordinatesxd and yd of 
the corner point) in the expression for 6x, variations of the flow parameters (“of the phase variables”), 
that is, of the u and u components of the velocity vector and the entropy s and, also, of the abscissa 
x = x(y) and the inclination of the shock wave cr = o(y) or the quantity X = ctgo occur, which are due 
to variations in the shape of the nose section. Dealing with the arbitrarinesses in the choice of the 
undetermined Lagrange multiplier, introduced when constructing the functional (3.6), we change the 
multipliers in front of the variations of the phase variables for any (not necessarily optimum) nose shape 
contour to zero. As a result, we obtain the so-called conjugate problem for Lagrange multipliers and 
only the variations of the controls remain in the expression for 6x, which enables one to formulate the 
necessary conditions for x to be a minimum. 

In formulating the conjugate problem, we initially write the terms of the expression for 6x with 
variations of some of the phase variables (denoting the remaining variations by dots) and, then, the 
equations and conditions which follow when the coefficients accompanying them are equated to zero. 
We begin with 6u, 6u and 6s in Q. By what has been said above, we have 

6x = . . . + II (R”6u + R%v + R”&)dxdy 
R 

where 

R” E a/I)$ _ bl’jaA + ar)az _ bl”3 + aF)z _ bf’& = 0 
X JY ay ay 

RUG a(1)% _ #‘3 + .(2,ap2 -- b(2)‘& + a(3&3 -- b(3’93 _ o 

v ax v ay v ax v ay v ax v ay - 
RSE a(1,a& _ b”‘a& + .(2jap2 

s ax s ay 
a(k) 

u 

(3.7) 

The well-known thermodynamic equalities 

Tds = di” -o’dp, 0’ = ii, ae2 = pi = -p2”,” = -p2j& (3.8) 

and the condition for the total enthalpy (2.1) to be constant were taken into account when calculating 
the derivatives of a@) and b@). In equalities (3.8) 0” = l/p” is the specific volume, a degree sign superscript 
is assigned to thermodynamic parameters, that is, to known functions ofp and S, and partial derivatives 
with respect top for constants are denoted by the subscriptp. On calculating the coefficients of system 
(3.7), taking account of relations (3.8), we reduce it to the form 

4% 2aih d &3 a d a a 
‘dt- ax a -+(u2-a2)$+su;iT--sa2A = 0, -s ax dt %+‘& 

4% 

dt+U 

a2 pb2 
-+--+(s-l)dz 
dt p ax = 0 

a a 
(a2 - V2Jd$ - a2u$ + u(a2 - V2Jdz - a2V2$ + s(a2 - V 

2 dp3 ap 
)dt - sa2z4$ = 0 

(3.9) 
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System (3.9) has the same characteristics as the flow equations (3.1). At any velocities, these are 
streamlines (Co-characteristics), along which 

42 v2& o 
+dt+7;dt = (3.10) 

with the operator dldt defined by the second relation of (3.9) and with p: = (a~“/&),. If the density is 
given, not as a function ofp and s but of p and i, that is, p = p(p, i), then, by virtue of equalities (3.Q 

p,” = -pTp,<O (3.11) 

The equations of system (3.9) which are independent of Eq. (3.10) can be written in the form 

(U2- U’@ +&E+!!!&v(~++) = 0 

aI% JCL* (a2-V2)(a~+s~)+(U2-a2)(Uag+$--) = 0 

When I/ > a, the C-characteristics are characteristics of this system. Along these characteristics, ul, 
u2 and u3 satisfy the differential relations 

4, + V 
cos(6 f a) 

cOSa 42 + 43 = 0 (3.12) 

with the upper (lower) sign for the C+(C)-characteristics. 
On the generatrix of the body idf, the variations ins, corresponding to a streamline which has passed 

across the direct shock wave, are equal to zero. Hence, here, with a different meaning of the variations 
from that above (in the integral over $2, the variations are differences in the values for fixed x and y 
and, now, in the shock wave, they are differences in the values for a fixedy and for the abscissae of the 
corresponding points which have been displaced together with the generatrix or the shock wave [lo]), 
we obtain 

d- f 
6x=...+ + 

L 1 
I I (B’%‘u+B”~~v)~~ = 0 

i d, 

where 
BU E -a(l) + p&z;) + b;‘ctgs) + “(a;) + bl”Ctg9) = 0 

BU s b(l) + &(a;) + bf’ctg6) + “(al” + b’,“ctgb) = 0 

The equation for determining the multiplier v(y) and the boundary condition relating pk in the generatrix 
of the nose shape follow from this. Since ctg6 = 0 in the front face, we shall write them separately for 
the front face and the flat segment 

v = -p,-sp3, p2 = -1 in id-, v = u-pl-sp3, p2 = -1 in d+f (3.13) 

In the closing C-characteristicfi, the variations have the same meaning as in the domain R when 
there is no variation inx. As a result, we shall have 

w 
6x = . . . + I (C”6u + C%u + C%s)dy 

f 

where 
C’~~CLk{u~)+b~)Ctg(~--)} = 0, r = u,V,s (3.14) 

Since@ is a C-characteristic, of the three equations (3.14) only two relating the multipliers uk in 
fw are independent. They have the form 

k+5+&+s& = O7 f-$+q-k = o (3.15) 
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where the notation 

5* = v cos(6 f a), 
cosa 

11 
f 

_ P,OVsinBtga + Tsin(r3 f a) 
P Vsina 

has been used (with the derivative pz, which is conveniently found using formula (3.11). 
According to the last condition of (3.13), p2f = -1. ulf and p3f are found from this and from Eqs 

(3.Q and ul, u2 and u3 infi are then determined from the simultaneous solution of the finite equations 
(3.15) and the differential equation (3.12) with the minus sign. 

In the section isi of the axis of symmetry, the variations 6~ = 6s = 0. Hence, 

i 

i0 

where 

A” = p&’ = 0 (3.16) 

The bi’) occurring here are of the order of yu. Hence, if, on approaching the x axis, the multipliers 
uk are bounded or increase more slowly than l/(yu), the condition (3.16) is automatically satisfied. The 
constraint on pk, which follows from it, can be written in the form 

lim &yz)) = 0, k = 1,2,3 
Y+o 

(3.17) 

Behind the bow shock wave, the variations in all of the parameters are expressed in terms of 6°C. 
Moreover, the variation in the shock wave abscissa is 8%. Finally, the contribution of the section iow 
of the shock wave to the variation 6% and the equation and conditions which follow from it take the 
form 

i0 

6x = . . . - hioAxio + h,(ctg(b - a) - Z},Ay, + I( W%“Z + WxG”x)dr 
w (3.18) 

W”Ed”- ddk’ o h 
& pkdy= ’ )&,=o 

Here, cpZ = ds/dC, dldy is a derivative with respect toy along the shock wave, the multiplier k(y) is a 
continuous function ofy and the expression for (pz is taken from [lo, p. 4351. 

Condition (3.18) is satisfied in the whole of the shock wave section iow, including at the point io. Since, 
a:& -yu at this point, 3Li0 = 0 according to conditions (3.17) and (3.18). Finally, all the terms on the 
right-hand side of the last expression for 6% disappear. 

The relation between the Lagrange multipliers at this point is obtained from the last condition of 
(3.19) and condition (3.18) written at the point W. 

(CL* + w3)wb? - pZwbt) + ~3wa:&,, = 0 (3.20) 

On the other hand, as has been explained earlier, the values of p& at the above-mentioned point 
have already been determined and, in the general case, they do not satisfy condition (3.20). Consequently, 
the C+-characteristic dw, which arrives at the point W, will be a line of discontinuity of the multipliers 
pk. This will only not be so if their limiting values, found from relations which are satisfied on the C- 
characteristic WJ, satisfy condition (3.20). It can be shown that this condition is satisfied if the reflection 
coefficient AW is equal to zero at the point w or, what is the same thing, condition (1.4) is satisfied. In 
this connection, we shall assume that lines of discontinuity of pk exist in the case of continuous flow 
parameters. Their contribution to the variation 8% and the conditions in such discontinuities which follow 
from it take the form 
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6x = . . . + I (D”6u + D%v + D”Ss)dy 

D’= [/&](a:)+~%:)) = 0, k = u, v, s 
(3.21) 

The integral is taken along all lines of discontinuity belonging to the domain Q; x’ = dxldy along such 
lines and [u,J is the difference between the values of uk at a discontinuity. 

The system of homogeneous equations (3.21) in [uk] only has non-zero solutions in the case of x’ 
determining the C?- and C’-characteristics. At the same time, only two conditions which are imposed 
on the discontinuities uk, are obtained from the three equalities (3.21). On the Ch-characteristics, we 
have 

x’ = ctg6, [&I = 0, [PII +.mJ = 0 

while, on the discontinuities of the C+- and C-characteristics 

(3.22) 

x’ = ctg(lY+cx), [&I +&[r”-21 +s[pJ = 0, [&I rq*[p*l = 0 (3.23) 

The upper(lower) signs correspond to the C+(C)-characteristics. 
Differential equation (3.1) is satisfied from both sides of the discontinuous CO-characteristic. If the 

streamline is not a tangential discontinuity, that is, the parameters on it continuous, then, taking account 
of the constancy of s along a streamline, we find 

V2p” 
M*-l+L d[tiL, + ~31 - 

PT dt 
+ /[Cl21 

dt 
4i.4 v24t4 o -up++- = 

dt T dt 

Together with condition (3.22) this gives that, along a continuous Co-characteristic 

[p2] = 0, [p,] = const, [us] = const in Co 

Using the same method, we obtain from Eqs (3.12) 

d&l + S+db21+ =Ul = 0 
Hence, from relations (3.23) the equality 

dp = p;ds + p;dp = p;ds- pVa-*dV 

and the compatibility conditions which are satisfied on the C’-characteristics, we find 

(3.24) 

[p2]2ypV2sin26tga = const, [CL11 = -5,[p21 -&I, [CL31 = *VJc121 (3.25) 

where, as everywhere, the upper (lower) signs correspond to C+(C)-characteristics. 
Conditions (3.15) on the C--characteristicfi differ from conditions (3.23) at the discontinuities of 

the C-characteristics only in the notation which is used (uk instead of [uk]). Onfi, the multipliers elk 
are therefore determined by the finite relations 

&pV2sin26tga = const, p, = -C+p2-sp3, CL3 = -ILCL2 (3.26) 

and by the corollary of condition (3.13) which is satisfied on d+f, uzf = -1. These relations will be 
required later and, for the present, we will turn to the discontinuities in the multipliers pk. 

We shall assume that, on the closed C-characteristic fi, the discontinuity uk arrived along the 
characteristic of another family (C? or C’). Then, in addition to equalities (3.22) or (3.23), the two 
additional conditions 

[cl,1 + S+[P*l + a31 = 07 b31+ UP21 = 0 

are satisfied at the point of intersection by virtue of conditions (3.15), which are satisfied onfi. It follows 
from this and from the corresponding equalities (3.22) or (3.23) that, at the above-mentioned point of 
the closing C-characteristicfw. 

[P,l = [CL*1 = [CL31 = 0 
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Since, according to relations (3.24) and (3.25), d&continuities along characteristics do not disappear, 
then, despite the assumption which has been made, the solution of the conjugate problem cannot have 
discontinuous C?- and (?-characteristics arriving onfw. 

The discontinuities along the streamlines onfw could arrive from the section iaw of the shock wave. 
Consequently, there cannot be points in isw which generate such discontinuities. Discontinuous Cf- 
characteristics could arrive on fi or, more accurately, on the part of it fc from the generatrix d+f. By 
virtue of the second condition of (3.13), a discontinuous C-characteristic could be reflected from d+f. 
These characteristics arrive on d+f and, in particular, from the section iW of the bow shock wave. Points 
of discontinuity, from which the emergence of discontinuous C-characteristics is permitted, can therefore 
only be located on the section 6. We recall (Fig. 2b) that s is the point of arrival of the sonic line 
dts on the bow shock wave. Under the sonic line, the flow is subsonic and, in it, there are neither 
“discontinuous” nor “continuous” C+- and C-characteristics, and only discontinuous (?-characteristics, 
which are forbidden in the conjugate problem being considered, are possible. The multiplers under the 
sonic line are therefore continuous and, as a rule, they are finite on approaching dts from below. If., 
however, uk increase without limit at certain points of the sonic line, then it is natural to suppose that 
their increase in approaching these points along different “subsonic directions” for each uk occurs without 
a change of sign. We shall call the continuity of the magnitudes or (when they increase without limit) 
the signs of uk the “reflection condition”. Hence, if a discontinuous (?-characteristic arrives at the sonic 
line, it must be reflected by a discontinuous C-characteristic (and vice versa), ensuring that the reflection 
condition is satisfied at the point of reflection. 

We will now investigate how the discontinuities in uk are reflected from the sonic line. On approaching 
the sonic line a + 7r/2, cosa + 0 and, by virtue of formulae (3.25), we have 

E = J&G (3.27) 

The plus (minus) superscripts indicate discontinuities in uk on discontinuous C+(C)-characteristics, 
and Cf and C are constants determining the magnitude of the jumps in the incident and reflected 
discontinuities. If a discontinuous Cf-characteristic arrives at the sonic line, then the constant C+ is 
known and C is determined from the condition that there are no discontinuous C’-characteristics in 
the subsonic flow domain. According to relations (32.7), the magnitude of the discontinuities in the 
multiplier u2 tends to zero as the sonic line is approached, and uI and u3 tend to infinity. In order to 
satisfy the reflection condition formulated above, at the points of reflection it is necessary that, with a 
chosen rule for calculating [uklr (for example, as the differences to the right and to the left of the 
discontinuous characteristics on moving along them towards the sonic line), the equality 

c- = c+ (3.28) 

should be satisfied. 
Discontinuous C-characteristics could arrive at the contour d+fnot only from the section iW of the 

bow shock wave but, also, from the section dt of the sonic line. This, however, is forbidden. Hence, if, 
together with the discontinuous Cf-characteristic dw in the bunch of rarefaction waves, there must also 
be other discontinuous C+-characteristics by virtue of the conditions of the conjugate problem, then 
the only possibility is the characteristic dt which touches the sonic line. The other discontinuous 
characteristics of the bunch would generate discontinuous C-characteristics going to d+fas the result 
of reflection either from the section dt of the sonic line or, by virtue of condition (3.8) with a continuous 
Lagrange multiplier h(y) on the shock wave, from its section i +w. The characteristic dt is special in this 
respect: at the point t, according to formulae (3.27) and (3.28), it “transfers” the discontinuity in uk 
going towards the shock wave to the section ti- of the C-characteristics. At the point i-, the discontinuous 
C-characteristic is reflected by the discontinuous C+-characteristic. That characteristic is reflected from 
the sonic line and so on, with bunching of the discontinuous Cf- and C-characteristics towards the 
points. 

In order to describe the reflection, from the bow shock wave, of the discontinuous C-characteristics, 
which, according to what has been said earlier, arrive at the section of the shock wave 6, we use condition 
(3.18), which is satisfied on iow and the continuity of the multiplier h(y) occurring in it. As in the case 
of reflection from the sonic line, we define [uk]’ as the differences to the right and to the left of the 
discontinuous C’-characteristics as one moves along them towards the point where the bow shock wave 
is encountered. Having done the necessary calculations, we obtain 
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[p,l+ = k,[cL,l-9 [kl+ = h[kl-9 [p3]+ - k [p ]- k =k 3 -339 1 z-’ 

@, 

/$ = 5 4 -b”-+ 
@I’ -a 

@: = sTa-2~*sina+c0s(6~~), a): = p,u,(u-u,)~*-pV2sin6sin2a (3.29) 

@* = T{a’p,sinfi-coscxsin(6fa)}, pP = = f, sTae2 = f((pFy; 
1 a 

The expressions for pP and sTae2 are written for a perfect gas. 
If the Lagrange multipliers satisfy the equation and conditions of the conjugate problem obtained 

above, then only variations ofx on id and d+f and the increments in the coordinates of the point d remain 
in the expression for Sx, which enables one to obtain the necessary conditions for a minimum of x. 
Together with the expression for 6x, they have the form 

6~ = YAy, + XAx, + B%=xdy 

d+ 

~--~+-(vpu)++j(lr,+w3)4p4+~,4~+pu~) = 0 

d 

(3.30) 

d+ 
(vpu)+-(vpu)-- j(cll +wMpN+W(pUU) 

d- 
(3.31) 

BXa -ypu(p, +sp3)120 in id- (3.32) 

B’~-yp~(p, +sp3)’ = 0 in d+f (3.33) 

The equality (3.30) determines the optimum size of the front face. The equivalent numerical search 
for the minimum value of C, for fixed 1 replaced it in the procedure for constructing short optimum 
bodies in Section 2. Inequalities (3.31) and (3.32) which correspond to the permissible variations of 
the abscissae of the corner points (Axd 2 0) and of the front face 6x 2 0 when 0 I y 5 yd, are conditions 
for the fact that the front face is a section of a boundary extremum. Finally, equality (3.33), or 

p1 + sp3 = const (3.34) 

is a necessary condition for an extremum, which determines the shape of the section d+f. Hence, it 
follows from relations (3.10) and (3.13) that, on d+f, all of the pk = const, lt2 = -1, and pl and l.t3 are 
defined by equalities (3.26) written at the pointf. The flow above the section d+fis supersonic. A change 
in its shape therefore has no effect on the flow past the front face (the generatrix d+frealizes a minimum 
of x for a fixed front face). In the method of an undetermined control contour, this led to equality (1.3) 
which defines the parameters on the sectionfc of the characteristicfi. On the optimum contour d+f, 
the multipliers nk = const are known. Using them, from the solution of the Cauchy problem with the 
data in d+f, we find uk in the triangle d+fc, which includes the characteristic&. We will show that (3.34) 
and the conditions of the conjugate problem in the triangle d+fc lead to condition (1.3). 

We assume that the solution of the Cauchy problem in the triangle d+fc with pk = const in the contour 
d+f has the form 

CL1 = P,W)~ CL2 = -13 CL3 = P3W (3.35) 

In the triangle d+fc, the initial system of equations (3.9) for nk is equivalent to the characteristic 
relations (3.10) and (3.12). On satisfying Eq. (3.10) the functions (3.35) reduce the two equations (3.12) 
to a single equation (a dot denotes a derivative with respect to \v) 
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p,+sji, = 0 

In the triangle d+fc, the entropy s = s(v), and Eq. (3.36) is not at variance with a solution in the 
form of (3.35). At the same time, u1 and u3 satisfy relations (3.15) with u2 = -1 on the sectionfc. It can 
be shown that substitution of u1 and u2, found from them, into Eq. (3.36) leads to the compatibility 
condition for the C-characteristics of the flow equation. Consequently, the functions ui(w) and n3(w), 
obtained from relations (3.15) with p2 = -1, give the solution of the Cauchy problem in the triangle 
d+fc, including the C+-characteristic d, c, and equality (1.3) which is obtained from (3.26) and (3.35) 
is satisfied on the section fc. Since, in the case of the generatrix d+f, which satisfies the necessary 
conditions for an extremum, and, for any (not necessarily optimum) ordinate of the point d, the 
multipliers uk are known in the whole of the triangle d+cf, it only remains to find the solution of the 
conjugate problem in the part of the domain Q which lies to the left of the characteristic d, c. Here, 
on the C+-characteristic d, c, the equalities (3.35), in which pi(w) and u3(@ are defined in the interval 
fc, are satisfied. 

The flow past a short nose section constructed using the method described in Section 2 is known 
and, according to its construction, the gently sloping segment d+f satisfies the necessary condition for 
an extremum. Furthermore, the ordinate of the point d also satisfies the necessary condition for an 
extremum. Hence, the solution of the conjugate problem is only necessary for verifying inequalities (3.31) 
and (3.32), that is, the necessary conditions for a minimum in x which must be satisfied on the assumed 
section of the boundary extremum, the front face id. The conjugate problem is solved from right to 
left, that is, it starts from the supersonic domain where the method of characteristics can be used. Here, 
uk are known on the characteristics d, c and WC and satisfy the final relation of (3.18) on the shock wave 
iow with the continuous multiplier h(y), which is determined on i,p simultaneously with CL/, by solving 
problem (3.19) with the initial condition at the point W. On carrying out this solution mentally, it can 
be shown that, in the case of the nose shape which has been constructed, the conditions which have 
been enumerated uniquely define the finite uk up to the line dti-, which consists of the section of the 
C+- and C+-characteristic dt and ti- which are smoothly joined at the point t. 

Under dti-, the conjugate problem becomes an elliptic-parabolic (mixed) problem and the sections 
dt and ti- may turn out to be lines of discontinuity of uk with all the consequences following from this, 
which have been described above. Using the finite values of pk found above dti-, their values below this 
line (with ul and u2 becoming infinite at the point t) are obtained by the addition of [uk]. According to 
relations (3.25) (3.27) and (3.28), these values are given, apart from a previously unknown constant 
C, by the formulae 

[PII = fC 
cos(6 r a) + sTae2@*sina 

&(M2- 1) 
l/4 I 

sin6sincr 

[)131 = T:c 
TL2@* 

J&M2 - 1)1’4sin6 

Here, Q’ is the same as in (3.29) and the upper (lower) signs in front of C and a and in the superscript 
refer to the section dt/(ti-) of the C+(C)-characteristic. 

4. CONCLUSION 

The problem of constructing axisymmetric nose shapes with a specified aspect ratio 1, that is, the ratio 
of their length to the radius of the base, which are optimum or close to optimum with respect to their 
wave drag, has been solved in the approximation of Euler’s equations. For any aspect ratios, they have 
a front face, which is a section of a boundary extremum, that appears on account of the constraint on 
the maximum permissible length, and a gently sloping section which is joined to the front face with a 
corner point. Verification of the fact that the front face is a section of a boundary extremum is obtained 
using calculations of the flow past the bodies constructed and bodies which are obtained in the case of 
permissible deformation of the front face. An alternative method of proof, which does not assume the 
actual forms of variation of the front face, can be based on the solution of the conjugate problem within 
the framework of the generalized method of Lagrange multipliers. The formulation of this problem 
presented in Section 3 is of interest in its own right, in particular, on account of the previously unknown 
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features of the reflection of the discontinuities of Lagrange multipliers from the sonic line, with some 
of them becoming infinite. 

Over the range of Mach numbers and aspect ratios 1.2 5 M, I 10,0.25 2 1 I 20 investigated, the wave 
drag coefficients C,” of the nose shapes constructed in the approximation of Newton’s formula as well 
as of blunt nose shapes were greater than the drag coefficients C, of the optimum nose shapes constructed 
in the approximation of Euler’s equations. However, when M, 2 3.0, the values of C,” exceed the values 
of C, for nose shapes which are optimum in the approximation of Euler’s equations, by just O&9.4%. 
The reductions in their drag coefficients C, calculated within the framework of Euler’s equations, 
compared with the values for cones, are found to be significantly greater than the analogous quantities 
determined using Newton’s formula. This confirms the surprising efficiency of Newton’s formula in 
problems of constructing the optimum configurations, but not when calculating their aerodynamic 
characteristics. 

The optimum nose shapes constructed have smaller values of C,X compared both with optimum blunt 
(single-parameter) and pointed (two-parameter) power law nose shapes. The first of these two types 
have been constructed earlier of M, 2 2 and 12 1. 

The second type can only be successfully constructed for fairly large 1: when M, 2 3 for 12 4 and, 
when M, = 1.5 and 2, for 12 6. In the case of the above-mentioned M, and 1, the excess of the values 
of CF1 of the blunt, power-law nose shapes from [36] over the value of C, for the optimum nose shape 
is from 20% down to tenths of a percent, depending on M, 2 2. The pointed nose shapes constructed 
in [37] for M, = lSandM, =2when6IlIlOand,forM, =3andM, =4,when4<I<lOhave 
values of CF2 which exceed the values of C, for the optimum nose shapes by no more than 3.3%. 

A calculation of the flow past optimum and blunt nose shapes with smooth contours for M, = 1.2, 
Re = 7 x lo6 and I = 4, in the approximation of the Reynolds equations and the “~~-90” model of 
turbulence,demonstrated the significant advantage of the optimum nose shapes both with respect to 
wave drag and overall drag. 
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